首页> 外文OA文献 >Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions
【2h】

Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

机译:1-因子分解和Hamilton分解猜想的证明III:   近似分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a sequence of four papers, we prove the following results (via a unifiedapproach) for all sufficiently large $n$: (i) [1-factorization conjecture] Suppose that $n$ is even and $D\geq 2\lceiln/4\rceil -1$. Then every $D$-regular graph $G$ on $n$ vertices has adecomposition into perfect matchings. Equivalently, $\chi'(G)=D$. (ii) [Hamilton decomposition conjecture] Suppose that $D \ge \lfloor n/2\rfloor $. Then every $D$-regular graph $G$ on $n$ vertices has a decompositioninto Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamiltoncycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answerquestions of Nash-Williams from 1970. The above bounds are best possible. Inthe current paper, we show the following: suppose that $G$ is close to acomplete balanced bipartite graph or to the union of two cliques of equal size.If we are given a suitable set of path systems which cover a set of`exceptional' vertices and edges of $G$, then we can extend these path systemsinto an approximate decomposition of $G$ into Hamilton cycles (or perfectmatchings if appropriate).
机译:在四篇论文的序列中,我们针对所有足够大的$ n $证明了以下结果(通过统一方法):(i)[1-分解猜想]假设$ n $是偶数,而$ D \ geq 2 \ lceiln / 4 \ rceil -1 $。然后,在$ n $顶点上的每个$ D $-正则图$ G $都会分解为完美的匹配。等效地,$ \ chi'(G)= D $。 (ii)[哈密尔顿分解猜想]假设$ D \ ge \ lfloor n / 2 \ rfloor $。然后,在$ n $个顶点上的每个$ D $-正则图$ G $都有分解为汉密尔顿循环,并且最多有一个完美的匹配。 (iii)在给定的最小度图中,我们证明了边不相交的哈密顿环数的最优结果。根据狄拉克的说法,(i)最早是在1950年代提出的。 (ii)和(iii)自1970年以来对纳什·威廉姆斯的回答。上述界限是最可能的。在当前的论文中,我们显示出以下内容:假设$ G $接近于一个完全平衡的二部图或两个相等大小的集团的并集。 $ G $的顶点和边,那么我们可以将这些路径系统扩展为$ G $的近似分解成汉密尔顿循环(或在合适的情况下完全匹配)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号